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Recognition of emotional states of users in human–computer interaction (HCI) has been shown to be

highly dependent on individual human characteristics and way of behavior. Multimodality is a key

issue in achieving more accurate results; however, fusing different modalities is a difficult issue in

emotion analysis. Emotion recognition systems are generally either rule-based or extensively trained

through emotionally colored HCI data sets. In either case, such systems need to take into account,

i.e., adapt their knowledge to, the specific user or context of interaction. Neural networks fit well

with the adaptation requirement, by collecting and analyzing data from specific environments. An

effective approach is presented in this paper, which uses neural network architectures to both detect the

need for adaptation of their knowledge, and adapt it through an efficient adaptation procedure. An

experimental study with emotion datasets generate in the framework of the EC IST Humaine Network of

Excellence.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation and objectives

The ability to detect and understand affective states and other
social signals of someone with whom we are communicating is
the core of social and emotional intelligence. This kind of
intelligence is a facet of human intelligence that has been argued
to be indispensable and even the most important for a successful
social life [12]. When it comes to computers, however, they are
socially ignorant [29]. Current computing technology does not
account for the fact that human–human communication is always
socially situated and that discussions are not just facts but part of
a larger social interplay. Not all computers will need social and
emotional intelligence and none will need all of the related skills
humans have. Yet, human–machine interactive systems capable of
sensing stress, inattention, confusion, and heedfulness, and
capable of adapting and responding to these affective states of
users are likely to be perceived as more natural, efficacious, and
trustworthy (see [24,30,31]). For example, in education, pupils’
affective signals inform the teacher of the need to adjust the
instructional message. Successful human teachers acknowledge
this and work with it; digital conversational embodied agents
must begin to do the same by employing tools that can accurately
sense and interpret affective signals and social context of the
ll rights reserved.
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pupil, learn successful context-dependent social behavior, and use
a proper affective presentation language (e.g. [28]) to drive the
animation of the agent. Automatic recognition of human affective
states is also important for video surveillance. Automatic assess-
ment of boredom, inattention, and stress would be highly valuable
in situations in which firm attention to a crucial but perhaps
tedious task is essential [24,25]. Examples include air traffic
control, nuclear power plant surveillance, and operating a motor
vehicle. An automated tool could provide prompts for better
performance informed by assessment of the user’s affective state.
Other domain areas in which machine tools for analysis of human
affective behavior could expand and enhance scientific under-
standing and practical applications include specialized areas in
professional and scientific sectors [7]. In the security sector,
affective behavioral cues play a crucial role in establishing or
detracting from credibility. In the medical sector, affective
behavioral cues are a direct means to identify when specific
mental processes are occurring. Machine analysis of human
affective states could be of considerable value in these situations
in which only informal, subjective interpretations are now used. It
would also facilitate research in areas such as behavioral science
(in studies on emotion and cognition), anthropology (in studies on
cross-cultural perception and production of affective states),
neurology (in studies on dependence between emotion dysfunc-
tion or impairment and brain lesions) and psychiatry (in studies
on schizophrenia and mood disorders) in which reliability,
sensitivity, and precision of measurement of affective behavior
are persisting problems.

While all agree that machine sensing and interpretation
of human affective information would be widely beneficial,
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addressing these problems is not an easy task. The main problem
areas can be defined as follows.
�
 What is an affective state? This question is related to
psychological issues pertaining to the nature of affective states
and the best way to represent them.

�
 Which human communicative signals convey information about

affective state? This issue shapes the choice of different
modalities to be integrated into an automatic analyzer of
human affective states.

�
 How are various kinds of evidence to be combined to optimize

inferences about affective states? This question is related to how
best to integrate information across modalities for emotion
recognition.

1.2. Related research

1.2.1. Affective states

Traditionally, the terms ‘‘affect’’ and ‘‘emotion’’ have been used
synonymously. Following Darwin, discrete emotion theorists
propose the existence of six or more basic emotions that are
universally displayed and recognized [8,17]. These include happi-
ness, anger, sadness, surprise, disgust, and fear. Data from both
Western and traditional societies suggests that non-verbal
communicative signals (especially facial and vocal expression)
involved in these basic emotions are displayed and recognized
cross-culturally. In opposition to this view, Russell [32] among
others argues that emotion is best characterized in terms of a
small number of latent dimensions, rather than in terms of a small
number of discrete emotion categories. Russell proposes bipolar
dimensions of arousal and valence (pleasant versus unpleasant).
Watson and Tellegen propose unipolar dimensions of positive and
negative affect while Watson and Clark proposed a hierarchical
model that integrates discrete emotions and dimensional views
[18,35,36]. Social constructivists argue that emotions are socially
constructed ways of interpreting and responding to particular
classes of situations. They argue further that emotion is culturally
constructed and no universals exist. From their perspective,
subjective experience and whether or not emotion is better
conceptualized categorically or dimensionally is culture-specific.
Then there is lack of consensus on how affective displays should
be labeled. For example, Fridlund [11] argues that human facial
expressions should not be labeled in terms of emotions but in
terms of Behavioural Ecology interpretations, which explain the
influence a certain expression has in a particular context. Thus, an
‘‘angry’’ face should not be interpreted as anger but as back-off-or-

I-will-attack. Yet, people still tend to use anger as the interpreta-
tion rather than readiness-to-attack interpretation. Another issue
is that of culture dependency: the comprehension of a given
emotion label and the expression of the related emotion seem to
be culture-dependent [21,38]. In summary, previous research
literature pertaining to the nature and suitable representation of
affective states provides no firm conclusions that could be safely
presumed and adopted in studies on machine analysis of human
affective states and affective computing. Also, it is not only
discrete emotional states like surprise or anger that are of
importance for the realization of proactive human–machine
interactive systems. Sensing and responding to behavioral cues
identifying attitudinal states like interest and boredom, to those
underlying moods, and to those disclosing social signaling like
empathy and antipathy are also essential [26]. Hence, in contrast
to traditional approach, we treat affective states as being
correlated not only to discrete emotions but to other, aforemen-
tioned social signals as well. Furthermore, since it is not certain
that each of us will express a particular affective state by
modulating the same communicative signals in the same way,
nor is it certain that a particular modulation of interactive cues
will be interpreted always in the same way independently of the
situation and the observer, we advocate that pragmatic choices
(e.g., application- and user-profiled choices) must be made
regarding the selection of affective states to be recognized by an
automatic analyzer of human affective feedback [25,26].
1.2.2. Recognition of emotions and context of interaction

Let us first focus on facial expression recognition. Facial
expressions can vary in intensity. By intensity we mean the
relative degree of change in facial expression as compared to a
relaxed, neutral facial expression. It has been experimentally
shown that the expression decoding accuracy and the perceived
intensity of the underlying affective state vary linearly with the
physical intensity of the facial display [13]. Hence, explicit
analysis of expression intensity variation is very important for
accurate expression interpretation, and is also essential to the
ability to distinguish between spontaneous and posed facial
behavior. While Facial Action Coding System (FACS) provides a
5-point intensity scale to describe AU intensity variation and
enable manual quantification of AU intensity [9], fully automated
methods that accomplish this task are yet to be developed.
However, first steps toward this goal have been made. Automatic
coding of intensity variation was explicitly compared to manual
coding in Bartlett et al. [2]. They found that the distance to the
separating hyperplane in their learned classifiers correlated
significantly with the intensity scores provided by expert FACS
coders.

Rapid facial signals do not usually convey exclusively one type
of messages. For instance, squinted eyes may be interpreted as
sensitivity of the eyes to bright light if this action is a reflex
(a manipulator), as an expression of disliking if this action has
been displayed when seeing someone passing by (affective cue),
or as an illustrator of friendly anger on friendly teasing if this
action has been posed (in contrast to being unintentionally
displayed) during a chat with a friend, to mention just a few
possibilities. As already mentioned earlier, to interpret an
observed facial expression, it is important to know the context
in which the observed expression has been displayed—where the
expresser is (outside, inside, in the car, in the kitchen, etc.), what
his or her current task is, are other people involved, and who the
expresser is. Knowing the expresser is particularly important as
individuals often have characteristic facial expressions and may
differ in the way certain states (other than the basic emotions) are
expressed. Since the problem of context sensing is extremely
difficult to solve (if possible at all) for a general case, pragmatic
approaches (e.g., activity/application- and user-centered ap-
proach) should be taken when learning the grammar of human
facial behavior [25,26]. However, except for a few works on user-
profiled interpretation of facial expressions like those of Fasel
et al. [10] and Ioannou et al., [14], virtually all existing automated
facial expression analyzers are context insensitive. Similar is the
case with systems dealing with other modalities, such as speech
and audio, hand and body gestures.

Regarding personalized expressivity, it is well known (see, for
example, recent results, on emotional signs from signals, of the
Humaine network of Excellence [22]) that in human–computer
interaction (HCI), the emotional characteristics and signs of
signals captured from a specific user, although adhering to some
general descriptive theories and psychological models, differ,
sometimes significantly, between different persons. Thus, emotion
recognition is a research problem, the solution of which highly
depends on individual human characteristics and way of behavior.



ARTICLE IN PRESS

G. Caridakis et al. / Neurocomputing 71 (2008) 2553–2562 2555
Emotion recognition systems are generally based on a rule base
system, or on a system that has learnt to solve the problem
through extensive training. In either case, if such a system is to be
used in a real-life experiment, it further needs to take into
account, i.e., to adapt its knowledge to the specific user
characteristics as well as behavioral and environmental condi-
tions, i.e., the context of interaction.

As richer the information provided by the interaction is, so
more cues can be derived for extracting the interaction context
and for achieving a better emotion recognition performance. The
case of using multiple modalities, referred as multimodal emotion
recognition, is, therefore, of crucial importance and research
interest. Integrating, however, cues from different modalities, is
not an easy task. Various types of problems, such as need for
synchronization, temporal integration and semantic fusion, cause
this difficulty.

In all cases, it is essential that systems are derived which are
able to adapt their performance to environmental changes, by
detecting deterioration of their performance, and refining it with
data obtained by the specific environment and respective cues
provided by the user or by cross-correlating different modalities.
Neural networks fit well with this requirement, since adaptation
is their main advantage when compared with knowledge-based
systems, where updating of knowledge is a complex, generally off-
line procedure. Both supervised, such as multilayered feed-
forward networks, and unsupervised networks, such as SOM or
k-NN-based approaches can be used for this purpose. In the rest of
the paper an adaptive supervised feed-forward network is
described and used for HCI enriched with emotion analysis
capabilities, showing that it can provide an effective approach to
handling of the above-described problems. The basic methodol-
ogy can be extended to unsupervised, clustering techniques.

Section 2 refers to the problem of emotion recognition and the
need for multimodal input fusion. Section 3.1 describes the
adaptive network architecture, while its use in different contexts
is presented in Section 3.2. An experimental study, with emotion
datasets showing, not only extreme emotions, but also inter-
mediate real-life ones, generated in the framework of the EC IST
Humaine Network of Excellence, is given in Section 4, while
conclusions and further work are discussed in Section 5.
2. Multimodal input fusion and emotion recognition

The term multimodal has been used in many contexts and
across several disciplines. In the context of emotion recognition, a
multimodal system is simply one that responds to inputs in more
than one modality or communication channel (e.g., face, gesture
and speech prosody in our case, writing, body posture, linguistic
content, and others) [15,23]. Jaimes and Sebe use a human-
centered approach in this definition: by modality we mean mode
of communication according to human senses or type of computer
Fig. 1. Information flow in the system: IMC ¼ inverse model controller; EMOT ¼
input devices. In terms of human senses the categories are sight,
touch, hearing, smell, and taste. In terms of computer input
devices we have modalities that are equivalent to human senses:
cameras (sight), haptic sensors (touch), microphones (hearing),
olfactory (smell), and even taste [19]. In addition, however, there
are input devices that do not map directly to human senses:
keyboard, mouse, writing tablet, motion input (e.g., the device
itself is moved for interaction), and many others.

Various multimodal fusion techniques are possible [39].
Feature-level fusion can be performed by merging extracted
features from each modality into one cumulative structure and
feeding them to a single classifier, generally based on multiple
Hidden Markov Models (HMM) or neural networks. In this
framework, correlation between modalities can be taken into
account during classifier learning. In general, feature fusion is
more appropriate for closely coupled and synchronized modal-
ities, such as speech and lip movements, but tends not to
generalize very well if modalities differ substantially in the
temporal characteristics of their features, as is the case between
speech and facial expression or gesture inputs. Moreover, due to
the high dimensionality of input features, large amounts of data
must be collected and labeled for training purposes.

Taylor and Fragopanagos describe a neural network architec-
ture (see [33,34]) in which features, from various modalities, that
correlate with the user’s emotional state are fed to a hidden layer,
representing the emotional content of the input message. The
output is a label of this state. Attention acts as a feedback
modulation onto the feature inputs, so as to amplify or inhibit the
various feature inputs, as they are or are not useful for the
emotional state detection. The basic architecture is thus based on
a feed-forward neural network, but with the addition of a
feedback layer (IMC in Fig. 1 below), modulating the activity in
the inputs to the hidden layer.

Results have been presented for the success levels of the
trained neural system based on a multimodal database, including
time-series streams of text (from an emotional dictionary),
prosodic features (as determined by a prosodic speech feature
extraction), and facial features (facial animation parameters
(FAPs)). The obtained results are different for different viewers
who helped to annotate the datasets. These results show high
success levels on certain viewers, while lower (but still good)
levels on other ones. In particular, very high success was obtained
using only prediction of activation values for one user who
seemed to use mainly facial cues, whilst a similar, but slightly
lower success level, was obtained on an annotator, who used
predominantly prosodic cues. Other two annotators appeared to
use cues from all modalities, and for them, the success levels were
still good but not so outstanding.

This leads to the need for a further study to follow up the
spread of such cue-extraction across the populace, since if this is
an important component then it would be important to know how
broad is this spread, as well as to develop ways to handle such a
hidden layer emotional state; and FEEL ¼ output state emotion classifier.
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Fig. 2. Overall architecture of the multimodal emotion recognition process.

Table 1
Recognized gestures and mapping to emotion labels

Emotion Gesture class

Joy Hand clapping—high frequency

Sadness Hands over the head—posture

Anger Lift of the hand—high speed

Italianate gestures

Fear Hands over the head—gesture

Italianate gestures

Disgust Lift of the hand—low speed

Hand clapping—low frequency

Surprise Hands over the head—gesture
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spread (such as having a battery of networks, each trained on the
appropriate subset of cues). It is, thus evident that adaptation to
specific users and contexts is a crucial aspect in this type of fusion.

Decision-level fusion caters for integrating asynchronous but
temporally correlated modalities. Here, each modality is first
classified independently and the final classification is based on
fusion of the outputs of the different modalities. Designing
optimal strategies for decision-level fusion is still an open
research issue. Various approaches have been proposed, e.g. sum
rule, product rule, using weights, max/min/median rule, majority
vote, etc. As a general rule, semantic fusion builds on individual
recognizers, followed by an integration process; individual
recognizers can be trained using unimodal data, which are easier
to collect.

We have developed such a system for emotion recognition,
based on decision-level fusion, when dealing with two visual
modalities, i.e., facial expressions and hand and body gestures [1].
In this case, a fuzzy-logic-based system was derived, based on the
formulation shown in Fig. 2.

In Fig. 2, the ‘facial expression decision system’ is trained to
recognize facial expressions based on extraction of facial points
and FAPs according to the MPEG-4 ISO standard. The ‘affective
gesture decision system’ is trained to recognize specific gestures,
which are mapped to relevant emotion labels, using HMM to
extract probabilities of gesture classes, as shown in Table 1. The
‘overall decision system’ takes into account the outputs of the two
aforementioned systems, using a fuzzy-logic rule-based approach.
While the overall system outperforms both unimodal ones, from
these experiments it has become clear that the ability of the
system to adapt to the specific characteristics and user/situation
contexts of the interaction is crucial.

The mapping of an image to an input vectors is based on
feature extraction process both on facial and gesture domains.
Concerning the detection of prominent facial points which leads
to the calculation of FAPs the estimated location of candidate
facial regions follows the detection of head position and pose (roll
rotation). Several techniques, presented in [14], including both
computer vision and artificial intelligence techniques produce a
set of masks which in turn are fused and a final mask per feature
family (eyes, eyebrows, and mouth) is produced. Hand coordi-
nates are extracted using a region extraction method using a color
skin model, morphological operations, and motion information
from the input image. Acoustic processing aims to quantify the
prosodic variations in speech based on a feature set including
pitch, intensity, duration, spectrum, and stability measures.

Decision-level fusion still fails to model the interplay between
different modalities, a fact which one can exploit to fortify the
results obtained from an individual modality (e.g. correlation
between visemes, the visual equivalent of phonemes, and
phonemes) or resolve uncertainty in cases where one or more
modalities are not dependable (e.g. speech analysis in the
presence of noise can be assisted by visually extracting visemes
and mapping them to possible phonemes). The resulting approach
is termed Dominant Modality Recoding Model. Nevertheless,
identification of dominant modalities is another open issue, which
could be resolved if (performance) confidence levels could be
estimated in each unimodal case and used thereafter.

In the rest of this paper, we examine the confidence produced
by each classifier, such as a feed-forward multilayer neural
network, handling a single modality-focusing on facial expres-
sions—and we derive an efficient methodology for adapting the
classifier’s performance, when detecting such a need, by collecting
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data from its specific environment. Thus, in the framework
presented here, facial expression is considered as the dominant
modality; this means that most of the time classification is
performed using the facial features as input. In cases where the
network trained with the facial data does not perform well (hence,
the need to adapt arises), speech prosody or gestures can be
utilized as ‘‘fall-back’’ solutions, possibly providing the expected
output for the adaptation process.
3. Adaptation procedure

3.1. The adaptive neural network architecture

Let us assume that we seek to classify, to one of, say, p available
emotion classes o, each input vector xi containing the features
extracted from the input signal. A neural network produces a
p-dimensional output vector yðxiÞ

yðxiÞ ¼ ½ p
i
o1

pi
o2
:::pi

op
�T (1)

where pi
oj

denotes the probability that the ith input belongs to the
jth class.

Let us first consider that the neural network has been initially
trained to perform the classification task using a specific training
set, say, Sb ¼ fðx

0

1; d
0

1Þ; � � � ; ðx
0

mb
; d
0

mb
Þ g, where vectors x0i and d

0

i

with i ¼ 1,2,?, mb denote the ith input training vector and the
corresponding desired output vector consisting of p elements.

Then, let yðxiÞ denote the network output when applied to a
new set of inputs, and let us consider the ith input outside
the training set, possibly corresponding to a new user, or to a
change of the environmental conditions. Based on the above-
described discussion, slightly different network weights should
probably be estimated in such cases, through a network adapta-
tion procedure.

Let wb include all weights of the network before adaptation,
and wa the new weight vector which is obtained after adaptation
is performed. To perform the adaptation, a training set Sc has to be
extracted from the current operational situation composed of say,
mc inputs; Sc ¼ fðx1; d1Þ; � � � ; ðxmc ; dmc Þ g, where xi and di with
i ¼ 1,2,?,mc similarly correspond to the ith input and desired
output data used for adaptation. The adaptation algorithm that is
activated, whenever such a need is detected, computes the new
network weights wa, minimizing the following error criteria with
respect to weights

Ea ¼ Ec;a þ ZEf ;a

Ec;a ¼
1
2 S

mc

i¼1
zaðxiÞ � di

�
�

�
�

2

Ef ;a ¼
1
2 S

mb

i¼1
zaðx

0
iÞ � d0i

�
�

�
�

2

(2)

where Ec,a is the error performed over training set Sc (‘‘current’’
knowledge), Ef,a the corresponding error over training set Sb

(‘‘former’’ knowledge); zaðxiÞ and zaðx
0

iÞ are the outputs of the
adapted network, corresponding to input vectors xi and x0i,
respectively, of the network consisting of weights wa. Similarly
zbðxiÞ would represent the output of the network, consisting of
weights wb, when accepting vector xi at its input; when adapting
the network for the first time zbðxiÞ is identical to yðxiÞ. Parameter
Z is a weighting factor accounting for the significance of the
current training set compared to the former one and J � J2 denotes
the L2-norm.

The goal of the training procedure is to minimize (2) and
estimate the new network weights wa. The adopted algorithm has
been proposed by the authors in [6]. Let us first assume that a
small perturbation of the network weights (before adaptation) wb
is enough to achieve good classification performance. Then

wa ¼ wb þ Dw

where Dw are small increments. This assumption leads to an
analytical and tractable solution for estimating wa, since it
permits linearization of the non-linear activation function of the
neuron, using a first order Taylor series expansion.

Eq. (2) indicates that the new network weights are estimated
taking into account both the current and the previous network
knowledge. To stress, however, the importance of current training
data in (2), one can replace the first term by the constraint that
the actual network outputs are equal to the desired ones, that is

zaðxiÞ ¼ di i ¼ 1; :::;mc; for all data in Sc (3)

Through linearization, solution of (3) with respect to the weight
increments is equivalent to a set of linear equations

c ¼ A � Dw (4)

where vector c and matrix A are appropriately expressed in terms
of the previous network weights. In particular

c ¼ ½d1 � � � dmc �
T � ½zbðx1Þ � � � zbðxmc Þ�

T (5)

Moreover, minimization of the second term of (2), which
expresses the effect of the new network weights over data set
Sb, can be considered as minimization of the absolute difference of
the error over data in Sb with respect to the previous and the
current network weights. This means that the weight increments
are minimally modified, with respect to the following error
criterion

ES ¼ Ef ;a � Ef ;b

�
�

�
�

2
(6)

with Ef,b defined similarly to Ef,a, with za replaced by zb in (2).
It can be shown [27] that (6) takes the form of

ES ¼
1
2ðDwÞT � KT

� K � Dw (7)

where the elements of matrix K are expressed in terms of the
previous network weights wb and the training data in Sb. The error
function defined by (7) is convex since it is of squared form. Thus,
the weight increments can be estimated through solution of (7).
The gradient projection method has been used in [6] to estimate
the weight increments.

Each time the decision mechanism ascertains that adaptation
is required, a new training set Sc is created, which represents the
current condition. Then, new network weights are estimated
taking into account both the current information (data in Sc) and
the former knowledge (data in Sb). Since the set Sc has been
optimized only for the current condition, it cannot be considered
suitable for following or future states of the environment. This is
due to the fact that data obtained from future states of the
environment may be in conflict with data obtained from the
current one. On the contrary, it is assumed that the training set Sb,
which is in general based on extensive experimentation, is able to
roughly approximate the desired network performance at any
state of the environment. Consequently, in every network
adaptation phase, a new training set Sc is created and the previous
one is discarded, while new weights are estimated based on the
current set Sc and the old one Sb, which remains constant
throughout network operation.

3.2. Detecting the need for adaptation

The purpose of this mechanism is to detect when the output of
the neural network classifier is not appropriate and consequently
to activate the adaptation algorithm at those time instances when
a change of the environment occurs.
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Let us first assume that a network adaptation has taken place
and let us focus on visual inputs. Let xðkÞ denote the feature vector
of the kth image or image frame, following the time at which
adaptation occurred. Index k is therefore reset each time
adaptation takes place, with xð0Þ corresponding to the feature
vector of the image where the adaptation of the network was
accomplished. At this input, the network performance had
deteriorated, i.e., the network output deviated from the desired
one. Let us recall that vector c in (5) expresses the difference
between the desired and the actual network outputs based on
weights wb and applied to the current data set. As a result, if the
norm of vector c increases, network performance deviates from
the desired one and adaptation should be applied. On the
contrary, if vector c takes small values, then no adaptation is
required. In the following we use the difference between the
output of the adapted network and of that produced by the
initially trained classifier to approximate the value of c. Moreover,
we assume that the difference computed when processing input
xð0Þ constitutes a good estimate of the level of improvement that
can be achieved by the adaptation procedure. Let us denote by e(0)
this difference and let e(k) denote the difference between the
corresponding classifiers’ outputs, when the two networks are
applied to xðkÞ. It is anticipated that the level of improvement
expressed by e(k) will be close to that of e(0) as long as the
classification results are good. This will occur when input images
are similar to the ones used during the adaptation phase. An error
e(k), which is quite different from e(0), is generally due to a
change of the environment. Thus, the quantity a(k) ¼ |e(k)�e(0)|
can be used for detecting the change of the environment or
equivalently the time instances where adaptation should occur.
Thus, no adaptation is needed if:

aðkÞoT (8)

where T is a threshold which expresses the max tolerance, beyond
which adaptation is required for improving the network perfor-
mance.

Such an approach detects with high accuracy the adaptation
time instances both in cases of abrupt and gradual changes of the
operational environment since the comparison is performed
between the current error difference e(k) and the one obtained
right after adaptation, i.e., e(0). In an abrupt operational change,
error e(k) will not be close to e(0); consequently, a(k) exceeds
threshold T and adaptation is activated. In case of a gradual
change, error e(k) will gradually deviate from e(0) so that the
Fig. 3. The Whissel’s wheel activation/vale
quantity a(k) gradually increases and adaptation is activated at
the frame where a(k)4T.

Network adaptation can be instantaneously executed each
time the system is put in operation by the user. Thus, the quantity
a(0) initially exceeds threshold T and adaptation is forced to take
place.
4. Experimental study

4.1. Corpus

In this section results of extensive experimentation, based on
the above-described adaptive neural network classifier are
provided.

Since the aim of this work is to emphasize on the ability to
classify sequences with naturalistic expressions, we have chosen
to utilize the SAL database for training and testing purposes [22].
Recordings were based on the notion of the ‘‘Sensitive Artificial
Listener’’, where the SAL simulates what some interviewers and
good listeners do, i.e. engages a willing person in emotionally
colored interaction on the basis of stock lines keyed in a broad
way to the speaker’s emotions. Although the final goal is to let the
SAL automatically assess the content of the interaction and select
the line with which to respond, this had not yet been fully
implemented at the time of the creation of the SAL database and
thus a ‘‘Wizard of Oz’’ approach was used for the selection of the
SAL’s answers [16]. The ‘‘Wizard of Oz’’ methodology is an
experimental simulation, in which experimental participants are
given the impression that they are interacting with a program that
understands English as well as another human would. The
experimenter, acting as ‘‘Wizard’’, surreptitiously intercepts
communications between participant and program, supplying
answers and new inputs as needed.

A point to consider in natural human interaction is that each
individual’s character has an important role on the human’s
emotional state; different individuals may have different emo-
tional responses to similar stimuli. Therefore, the annotation of
the recordings should not be based on the intended induced
emotion but on the actual result of the interaction with the SAL.
Towards this end, FeelTrace was used for the annotation of
recordings in SAL [4]. This is a descriptive tool that has been
developed at Queen’s University Belfast using dimensional
representations, which provides time-sensitive dimensional
nce dimensional representation [37].
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representations. It lets observers track the emotional content of a
time-varying stimulus as they perceive it. Fig. 3 illustrates the
kind of display that FeelTrace users see as well as a particular
trace across a tune. The tune is defined loosely by either a
Table 2
Emotion classes

Label Location in FeelTrace [5] diagram

Q1 Positive activation, positive evaluation (+/+)

Q2 Positive activation, negative evaluation (+/�)

Q3 Negative activation, negative evaluation (�/�)

Q4 Negative activation, positive evaluation (�/+)

Neutral Close to the center

Table 3
Class distribution in the SAL dataset

Neutral Q1 Q2 Q3 Q4 Total

Tunes 47 205 90 63 72 477

Percentages 9.85 42.98 18.87 13.21 15.09 100.00

Table 4
Samples from the different subjects displaying emotions

1st quadrant (+,+) 2nd quadrant (�,+)
meaningful sentence or a temporal segment during which the
subject has a steady emotional state. We observed that in the
majority of the cases from a subjective point of view, a tune
defined using criteria such as audio pauses to be a good temporal
segmentation. This segmentation refers only to the temporal axis
and is not dependent on extracted features from any modality.

The space is represented by a circle on a computer screen, split
into four quadrants by the two main axes. The vertical axis
represents activation, running from very active to very passive and
the horizontal axis represents evaluation, running from very
positive to very negative. It reflects the popular view that
emotional space is roughly circular. The center of the circle marks
a sort of neutral default state, and putting the cursor in this area
indicates that there is no real emotion being expressed. A user
uses the mouse to move the cursor through the emotional space,
so that its position signals the levels of activation and evaluation
perceived by her/him, and the system automatically records the
coordinates of the cursor at any time.

The x–y coordinates of the mouse movements on the two-
dimensional user interface are mapped to the five emotional
categories presented in Table 2. Applying a standard pause
detection algorithm on the audio channel of the recordings in
examination, the database has been split into 477 tunes, with
lengths ranging from 1 up to 174 frames. A bias towards Q1 exists
in the database, as 42.98% of the tunes are classified to Q1, as
3rd quadrant (�,�) 4th quadrant (+,�)
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Fig. 4. MSE of NetProm (blue) and Neti (red).
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shown in Table 3. Table 4 shows the four different subjects
displaying emotions from a variety of tunes and quadrants.
4.2. Experiments

Our experiments aimed at investigating the practical stand of
the proposed adaptation procedure. The main idea of the
experimental study was to explore the performance of the
adapted networks over inputs belonging to the same tune, but
not used for adaptation, as well as to tunes of the same emotional
quadrant as the one used for adaptation purposes.

Out of approximately 35,000 frames, belonging to 477 tunes of
the SAL database, we selected a merely 500 frames—from all four
subjects—for training a feed-forward back-propagation network
referred from now as NetProm. The architecture details for
NetProm are three layers consisting of 10 and 5 neurons on the
first and second hidden layers, respectively, and 5 neurons of the
output layer. The targets were formatted as a 5�1 vector for every
frame so as to only one, of the 5 candidate classes, was equal to 1.
So for example if the frame used for training belonged to the first
quadrant the output vector would be [1 �1 �1 �1 �1]. The fifth
class of the classification problem corresponds to the neutral
emotional state and the other four to the four quadrants of the
Whissel’s wheel.

The selection of the 500 frames used for training the NetProm
network was made following a prominence criterion. More
specifically, for every frame, a metric was assigned denoting the
distance of the values of the FAPs for that specific frame with
reference to the mean values of the FAPs of the other frames
belonging to the same class. This metric of FAP variance was the
sorting parameter for the frames. Under the constraint that each
class should be represented as equally as possible we selected the
500 most prominent frames and used it as input for training the
NetProm network.

With regard to the adaptation phase we selected 11 tunes
consisting of the largest number of frames. This selection was
based on the idea that it would not make much sense selecting
very short tunes, because the adaptation data would be very
sparse as will be explained later. Also we made sure that no frame
belonging to these 11 tunes was used for training NetProm. Each
of the 11 tunes was divided into two groups of frames, the
adaptation group and the testing group containing 30% and 70% of
the total frames of the original tune, sorted by the prominence
criterion, respectively.

NetProm was adapted using the adaptation group of the eleven
tunes and produced 11 new networks Neti, i ¼ 1,y,11. Each Neti

was then tested on the testing group of the respective tune and
the results can be seen in Fig. 4. It is clear that the adaptation
procedure has been beneficial and greatly reduced the MSE for
every tune it was applied.

Furthermore, we tested the procedure proposed in Section 4
for detecting when adaptation is necessary. In particular, we used
the above-derived Neti and compared their performance with that
of NetProm through criterion (8) in 11 synthetic experiments,
shown in Fig. 5. The reader is prompted to notice the different
scaling of y-axis of this figure because this way the point that this
figure wants to point out becomes more evident. On the other
hand, the x-axis represents the number of frames which is also
different across tunes. In the first 6 experiments and in the 9th,
there was no change of the subject showing the expression. It can
be verified that the value of e(k), for all values of k shown in the
horizontal axis, are close to the e(0) value, so no need for
adaptation was detected. On the contrary, the 7th, 8th, 10th, and
11th experiments contained one or more frames where a different
subject (the first) showed a similar expression. In most of these
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Fig. 5. Detecting the need for network adaptation using the criterion of Eq. (8).
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cases the a(k) value was raised due to the inappropriateness of the
adapted (to the fourth subject) network to cope well with the
specific characteristics of the first subject. Consequently the need
for (new) adaptation was detected through usage of criterion (8).

These results are very promising indicating that the proposed
process can form an effective adaptation tool in expression/
emotion recognition.
5. Conclusions

Recognition of facial expressions and hand gestures is a very
important part of adapting HCI to the needs and feedback from
the users, especially since psychological research has shown that
the face is vital ingredient of human expressivity. However, in
everyday HCI, emotions are usually subtle, hence difficult to pick
out using a small set of universal labels; to tackle this, one needs
to consider multiple modalities as a ‘‘fall-back’’ or reinforcement
solution. In addition to this, personalized expressivity and context
dependence make generalization of learning techniques a daunt-
ing task.

In this paper we proposed an extension of a neural network
adaptation procedure, which caters for training from different
modalities. After training and testing on a particular subject, the
best-performing network is adapted using prominent samples
from discourse with another subject, so as to adapt and improve
its ability to generalize. Results shown here indicate that the
performance of the network is improved using this approach,
without the need to train a specific network for each subject,
which would wipe out the nice generalization attribute of the
network. Future work includes the extension of this work to
include speech-related modalities, deployment on different
naturalistic contexts and introduction of mechanisms to handle
uncertainty in the various modalities and decide which of them
would be the more robust to depend upon for co-training [3,20].
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